
pytest-nodev Documentation
Release 0.9.9.dev0

Alessandro Amici

2016-07-16

Table of Contents

1 Quickstart 3
1.1 New user FAQ . 3
1.2 BIG FAT WARNING! . 4
1.3 Project resources . 4
1.4 Contributing . 5
1.5 License . 5

2 Tutorial 7
2.1 nodev starter kit . 7

3 User’s guide 9
3.1 Installation . 9
3.2 Basic usage . 9
3.3 Advanced usage . 9
3.4 Command line reference . 10

4 Concepts 11
4.1 Motivation . 11
4.2 Test-driven code search . 11
4.3 Tests validation . 12
4.4 Bibliography . 12

5 Design 13
5.1 Mission and vision . 13
5.2 Software architecture . 13
5.3 Version goals . 14

i

ii

pytest-nodev Documentation, Release 0.9.9.dev0

Version 0.9.9.dev0

Date 2016-07-16

Test-driven source code search for Python.

New to the concept of test-driven code search? Jump to the Quickstart for a 2 minutes hands-on overview. Curious
about the technique? Head over to the Concepts section or go through our Tutorial. The User’s guide documents
pytest-nodev usage in details and covers a few more examples.

If you have any feedback or you want to help out head over our main repository: https://github.com/nodev-io/pytest-
nodev

Table of Contents 1

https://github.com/nodev-io/pytest-nodev
https://github.com/nodev-io/pytest-nodev

pytest-nodev Documentation, Release 0.9.9.dev0

2 Table of Contents

CHAPTER 1

Quickstart

1.1 New user FAQ

pytest-nodev is a simple test-driven search engine for Python code, it finds classes and functions that match the be-
haviour specified by the given tests.

How does “test-driven code search” work?

To be more precise pytest-nodev is a pytest plugin that lets you execute a set of tests that specify the expected behaviour
of a class or a function on all objects in the Python standard library and in all the modules you have installed.

Show me how it works in practice. I need to write a parse_bool function that robustly parses a boolean value
from a string. Here is the test I intend to use to validate my own implementation once I write it.:

def test_parse_bool():
assert not parse_bool('false')
assert not parse_bool('FALSE')
assert not parse_bool('0')

assert parse_bool('true')
assert parse_bool('TRUE')
assert parse_bool('1')

First, install the latest version of pytest-nodev from the Python Package Index:

$ pip install pytest-nodev

Then copy your specification test to the test_parse_bool.py file and decorate it with
pytest.mark.candidate as follows:

import pytest

@pytest.mark.candidate('parse_bool')
def test_parse_bool():

assert not parse_bool('false')
assert not parse_bool('FALSE')
assert not parse_bool('0')

assert parse_bool('true')
assert parse_bool('TRUE')
assert parse_bool('1')

Finally, instruct pytest to run your test on all candidate callables in the Python standard library:

3

https://pytest.org
https://pypi.python.org/pypi/pytest-nodev

pytest-nodev Documentation, Release 0.9.9.dev0

$ py.test --candidates-from-stdlib test_parse_bool.py
======================= test session starts ==========================
platform darwin -- Python 3.5.1, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /tmp, inifile: setup.cfg
plugins: nodev-1.0.0, timeout-1.0.0
collected 4000 items

test_parse_bool.py xxxxxxxxxxxx[...]xxxxxxxxXxxxxxxxx[...]xxxxxxxxxxxx

====================== pytest_nodev: 1 passed ========================

test_parse_bool.py::test_parse_bool[distutils.util:strtobool] PASSED

=== 3999 xfailed, 1 xpassed, 260 pytest-warnings in 75.38 seconds ====

In just over a minute pytest-nodev collected 4000 functions from the standard library, run your specification test on all
of them and reported that the strtobool function in the distutils.util module is the only one that passes your test.

Now you can review it and if you like it you may use it in your code. No need to write your own implementation!

Wow! Does it work so well all the times?

To be honest strtobool is a little known gem of the Python standard library that is just perfect for illustrating all the
benefits of test-driven code search. Here are some of them in rough order of importance:

• a function imported is a one less function coded—and tested, documented, debugged, ported, maintained...

• it’s battle tested code—lot’s of old bugs have already been squashed

• it’s other people code—there’s an upstream to report new bugs to

• it gives you additional useful functionality—for free on top of that

• it’s in the Python standard library—no additional dependency required

1.2 BIG FAT WARNING!

A lot of functions called with the wrong set of arguments may have unexpected consequences ranging from slightly
annoying, think os.mkdir(’false’), to utterly catastrophic, think shutil.rmtree(’/’, True). Seri-
ous use of pytest-nodev, in particular using --candidates-from-all, require running the tests with operating-
system level isolation, e.g. as a dedicated user or even better inside a dedicated container. The User’s guide documents
how to run pytest-nodev safely and efficiently.

1.3 Project resources

Documentation http://pytest-nodev.readthedocs.io
Support https://stackoverflow.com/search?q=pytest-nodev
Development https://github.com/nodev-io/pytest-nodev
Discussion To be decided, see issue #15
Download https://pypi.python.org/pypi/pytest-nodev
Code quality

4 Chapter 1. Quickstart

https://docs.python.org/3/distutils/apiref.html#distutils.util.strtobool
http://pytest-nodev.readthedocs.io/en/stable/usersguide.html
http://pytest-nodev.readthedocs.io
https://stackoverflow.com/search?q=pytest-nodev
https://github.com/nodev-io/pytest-nodev
https://github.com/nodev-io/pytest-nodev/issues/15
https://pypi.python.org/pypi/pytest-nodev

pytest-nodev Documentation, Release 0.9.9.dev0

1.4 Contributing

Contributions are very welcome. Please see the CONTRIBUTING document for the best way to help. If you encounter
any problems, please file an issue along with a detailed description.

Authors:

• Alessandro Amici - @alexamici

Contributors:

• @calmomau

• @kr1

Sponsors:

•

1.5 License

pytest-nodev is free and open source software distributed under the terms of the MIT license.

1.4. Contributing 5

https://github.com/nodev-io/pytest-nodev/blob/master/CONTRIBUTING.rst
https://github.com/alexamici
https://github.com/calmomau
https://github.com/kr1
http://opensource.org/licenses/MIT

pytest-nodev Documentation, Release 0.9.9.dev0

6 Chapter 1. Quickstart

CHAPTER 2

Tutorial

Warning: This section is work in progress and there will be areas that are lacking.

2.1 nodev starter kit

Use of --candidates-from-all may be very dangerous and it is disabled by default.

In order to search safely in all modules we suggest to use docker for OS-level isolation.

To kickstart your advanced usage clone the nodev-starter-kit:

$ git clone https://github.com/nodev-io/nodev-starter-kit.git

or better yet, fork it on GitHub and clone your own fork:

$ git clone https://github.com/YOUR_GITHUB_NAME/nodev-starter-kit.git

Enter the starter kit folder:

$ cd nodev-starter-kit

build the nodev docker image with all module from requirements.txt installed:

$ docker build -t nodev .

and run tests with:

$ docker run --rm -it -v `pwd`:/home/pytest nodev --candidates-from-all tests/test_factorial.py

7

pytest-nodev Documentation, Release 0.9.9.dev0

8 Chapter 2. Tutorial

CHAPTER 3

User’s guide

Warning: This section is work in progress and there will be areas that are lacking.

Intended audience: python developers who’ve got better things to do than reinvent wheels.

3.1 Installation

Install the latest version of pytest-nodev from the Python Package Index:

$ pip install pytest-nodev

3.2 Basic usage

Write a specification test instrumented with the candidate fixture in the test_example.py file. Run pytest
with one of the --candidates-from-* options to select the search space, e.g. to search in the Python standard
library:

$ py.test --candidates-from-stdlib test_example.py

3.3 Advanced usage

Use of --candidates-from-all may be very dangerous and it is disabled by default.

In order to search safely in all modules we suggest to use docker for OS-level isolation. To kickstart your advanced
usage downlaod the nodev-tutorial:

$ git clone https://github.com/nodev-io/nodev-tutorial.git
$ cd nodev-tutorial

build the nodev docker image with all module from requirements.txt installed:

$ docker build -t nodev .

and run tests with:

$ docker run --rm -it -v `pwd`:/home/pytest nodev --candidates-from-all tests/test_factorial.py

9

https://pypi.python.org/pypi/pytest-nodev

pytest-nodev Documentation, Release 0.9.9.dev0

Alternatively you can enable it on your regular user only after you have understood the risks and set up appropriate
mitigation strategies by setting the PYTEST_NODEV_MODE environment variable to FEARLESS:

$ PYTEST_NODEV_MODE=FEARLESS py.test --candidates-from-all --candidates-includes .*util -- test_example.py

3.4 Command line reference

The plugin adds the following options to pytest command line:

nodev:
--candidates-from-stdlib

Collects candidates form the Python standard library.
--candidates-from-all

Collects candidates form the Python standard library
and all installed packages. Disabled by default, see
the docs.

--candidates-from-specs=CANDIDATES_FROM_SPECS=[CANDIDATES_FROM_SPECS=...]
Collects candidates from installed packages. Space
separated list of `pip` specs.

--candidates-from-modules=CANDIDATES_FROM_MODULES=[CANDIDATES_FROM_MODULES=...]
Collects candidates from installed modules. Space
separated list of module names.

--candidates-includes=CANDIDATES_INCLUDES=[CANDIDATES_INCLUDES=...]
Space separated list of regexs matching full object
names to include, defaults to include all objects
collected via `--candidates-from-*`.

--candidates-excludes=CANDIDATES_EXCLUDES=[CANDIDATES_EXCLUDES=...]
Space separated list of regexs matching full object
names to exclude.

--candidates-predicate=CANDIDATES_PREDICATE
Full name of the predicate passed to
`inspect.getmembers`, defaults to `builtins.callable`.

--candidates-fail Show candidates failures.

10 Chapter 3. User’s guide

CHAPTER 4

Concepts

Warning: This section is work in progress and there will be areas that are lacking.

4.1 Motivation

“Have a look at this piece of code that I’m writing–I’m sure it has been written before. I wouldn’t be
surprised to find it verbatim somewhere on GitHub.” - @kr1

Every piece of functionality in a software project requires code that lies somewhere in the wide reusability spectrum
that goes form extremely custom and strongly tied to the specific implementation to completely generic and highly
reusable.

On the custom side of the spectrum there is all the code that defines the features of the software and all the choices of
its implementation. That one is code that need to be written.

On the other hand a seasoned software developer is trained to spot pieces of functionality that lie far enough on the
generic side of the range that with high probability a library already implements it and documents it well enough to
be discovered with an internet search.

In between the two extremes there is a huge gray area populated by pieces of functionality that are not generic enough
to obviously deserve a place in a library, but are common enough that must have been already implemented by someone
else for their software. This kind of code is doomed to be re-implemented again and again for the simple reason that
there is no way to search code by functionality...

Or is it?

4.2 Test-driven code search

When developing new functionalities developers spend significant efforts searching for code to reuse, mainly via
keyword-based searches, e.g. on StackOverflow and Google. Keyword-based search is quite effective in finding code
that is explicitly designed and documented to be reused, e.g. libraries and frameworks, but typically fails to identify
reusable functions and classes in the large corpus of auxiliary code of software projects.

TDR aims to address the limits of keyword-based search with test-driven code search that focuses instead on code
behaviour and semantics. Developing a new feature in TDR starts with the developer writing the tests that will validate
candidate implementations of the desired functionality. Before writing any functional code the tests are run against all
functions and classes of all available projects. Any code passing the tests is presented to the developer as a candidate
implementation for the target feature.

11

https://github.com/kr1

pytest-nodev Documentation, Release 0.9.9.dev0

pytest-nodev is a pytest plugin that enables test-driven code search and consequently a software development strategy
called test-driven reuse or TDR that we call nodev, that is an extension of the well known test-driven development or
TDD.

The idea is that once the developer has written the tests that define the behaviour of a new function to a degree sufficient
to validate the implementation they are going to write it is good enough to validate any implementation. Running the
tests on a large set of functions may result in a passed, that is a function that already implements their feature.

Due to its nature the approach is better suited for discovering smaller functions with a generic signature.

4.3 Tests validation

Another use for pytest-nodev is, with a bit of additional work, to validate a project test suite. If a test passes with an
unexpected object there are two possibilities, either the test is not strict enough and allows for false positives and needs
to be updated, or the passed is actually a function you could use instead of your implementation.

Keywords:

• Source code search by feature, search by functionality, search by specification or nodev

• Feature-specification test and test suite or Requirement-specification test

• Test-driven reuse or test-driven code search or test-driven source code search

4.4 Bibliography

• “CodeGenie: a tool for test-driven source code search”, O.A. Lazzarini Lemos et al, Companion to the 22nd
ACM SIGPLAN conference on Object-oriented programming systems and applications companion, 917–918,
2007, ACM, http://dx.doi.org/10.1145/1297846.1297944

• “Code conjurer: Pulling reusable software out of thin air”, O. Hummel et al, IEEE Software, (25) 5 45-52, 2008,
IEEE, http://dx.doi.org/10.1109/MS.2008.110 — PDF

• “Finding Source Code on the Web for Remix and Reuse”, S.E. Sim et al, 251, 2013 — PDF

• “Test-Driven Reuse: Improving the Selection of Semantically Relevant Code”, M. Nurolahzade, Ph.D. thesis,
2014, UNIVERSITY OF CALGARY — PDF

12 Chapter 4. Concepts

http://dx.doi.org/10.1145/1297846.1297944
http://dx.doi.org/10.1109/MS.2008.110
http://cosc612.googlecode.com/svn/Research%20Paper/Code%20Conjurer.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.2645&rep=rep1&type=pdf
http://lsmr.org/docs/nurolahzade_phd_2014.pdf

CHAPTER 5

Design

This chapter documents the high-level design of the product and it is intended for developers contributing to the
project.

Note: Users of the product need not bother with the following. Unless they are curious :)

5.1 Mission and vision

The project mission is to enable test-driven code search for Python with pytest.

Target use cases:

1. test-driven reuse

2. tests validation

Project goals:

1. collect all possible python live objects (modules, functions, classes, singletons, constants...)

2. enable flexible search space definition

3. let users turn normal tests into specification tests, and vice versa, with minimal effort

Project non-goals:

1. protect the user from unintended consequences (clashes with goal 1.), instead document how to use OS-level
isolation/containerization

2. help users writing implementation-independent specification tests (think a contains function that also tests
inside dict values and class attributes)

5.2 Software architecture

Logical components:

• the collector of candidate objects, with filtering

• the test runner, via the pytest plugin interface

13

pytest-nodev Documentation, Release 0.9.9.dev0

5.3 Version goals

This project strives to adhere to semantic versioning.

5.3.1 1.0.0 (upcoming release)

Minimal set of features to be operationally useful and to showcase the nodev approach. Reasonably safe to test, but
not safe to use without OS-level isolation. No completeness and no performance guarantees.

• Search environment definition:

– Support defining which modules to search. Command line --candidates-from-* options.

– Support defining which objects to include/exclude by name or via a predicate test function. Command line
--candidates-includes/excludes/predicate options.

• Object collection:

– Collect most objects from the defined environment. It is ok to miss some objects for now.

• Test execution:

– Execute tests instrumented with the candidate fixture once for every object collected. The tests are
marked xfail unless the --candidates-fail command line option is given to make standard pytest
reporting the most useful.

• Report:

– Report which objects pass each test.

• Safety:

– Interrupting hanging tests is delegated to pytest-timeout.

– Internal modules and objects starting with an underscore are excluded.

– Potentially dangerous, crashing, hard hanging or simply annoying objects belonging to the standard li-
brary are unconditionally blacklisted so that new users can test --candidates-from-stdlib with-
out bothering with OS-level isolation.

– Limited use of --candidates-from-all.

• Documentation:

– Enough to inspire and raise interest in new users.

– Enough to use it effectively and safely. Give a strategy to get OS-level isolation.

14 Chapter 5. Design

http://semver.org

	Quickstart
	New user FAQ
	BIG FAT WARNING!
	Project resources
	Contributing
	License

	Tutorial
	nodev starter kit

	User's guide
	Installation
	Basic usage
	Advanced usage
	Command line reference

	Concepts
	Motivation
	Test-driven code search
	Tests validation
	Bibliography

	Design
	Mission and vision
	Software architecture
	Version goals

